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SUMMARY

A framework is described and demonstrated for CFD analysis of helicopter rotors in hover and for-
ward �ight. Starting from the Navier–Stokes equations, the paper describes the periodic rotor blade
motions required to trim the rotor in forward �ight (blade �apping, blade lead-lag and blade pitching)
as well as the required mesh deformation. Throughout, the rotor blades are assumed to be rigid and
the rotor to be fully articulated with separate hinges for each blade. The employed method allows for
rotors with di�erent numbers of blades and with various rotor hub layouts to be analysed. This method
is then combined with a novel grid deformation strategy which preserves the quality of multi-block
structured, body-�tted grids around the blades. The coupling of the CFD method with a rotor trimming
approach is also described and implemented. The complete framework is validated for hovering and
forward �ying rotors and comparisons are made against available experimental data. Finally, suggestions
for further development are put forward. For all cases, results were in good agreement with experi-
ments and rapid convergence has been obtained. Comparisons between the present grid deformation
method and trans�nite interpolation were made highlighting the advantages of the current approach.
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1. INTRODUCTION

The numerical simulation of �ows around �xed wings has been undertaken by many authors
(see Reference [1] among others) and aerodynamic loads can be obtained with relative ease at
design conditions. For rotary wings, however, the situation appears to be more complicated and
CFD analysis is signi�cantly harder as documented in References [2–14]. There are several
reasons contributing to this which can be grouped into two categories. First, the �ow physics
of a rotating wing is rich in terms of �uid mechanics phenomena. Strong vortices interacting
with each other and the rotor blades, formation of a complex spiral wake behind the rotor,
transition to turbulence and the wide variation of the Mach and Reynolds numbers around
the azimuth are a few of the di�cult issues CFD methods have to cope with. The second
family of problems comes from the strong link between the aerodynamics and dynamics of the
rotor blades. It is almost impossible to consider one without the other and the link between
the two is the balance of forces acting on the rotor which is dictated by, and at the same
time dictates the loading of the blades. The di�erences in blade normal velocities on the
advancing and retreating sides combined with the requirement that the rotor does not produce
a pitching or rolling moment on the helicopter creates the main complicating factor. The
pitch and roll moments vanish for a blade incidence that depends on the azimuthal position
(a smaller incidence on the advancing side and a larger one on the retreating side) and by
introducing a �ap hinge that gives the blades freedom to �ap up and down. However, the
pitch settings of the blade and the �apping de�ections are not known in advance and form
part of the solution. The above is commonly known as the trimming problem and further
complicates the numerical simulations of rotors in forward �ight. A detailed account of all
aerodynamic challenges related to the analysis of helicopter rotors is described in the review
paper of Conlisk [15].
For the above reasons, the direct CFD analysis of rotors has been undertaken by very few

authors. Most of the published works focus on the numerical simulation of hovering rotors,
such e�orts can be found in References [6, 10–12] among others. Regarding forward-�ying
rotors, References [3–5, 7, 13, 14, 16, 17] document the e�orts of several researchers over the
last 10 years. A small number of these [4, 5, 13, 16, 17] have addressed the full problem both
in terms of the aerodynamic and the aeromechanic modelling.
In the numerical simulation of a trimmed rotor in forward �ight, the rotor geometry changes

continuously as a result of the periodic blade motions. This requires the deformation of the
CFD mesh at each time step. Forward �ight simulation including the periodic motion of the
blades has been undertaken by few researchers, e.g. References [7, 4, 8, 9, 16, 17] and their
approaches can be split in two groups: the Chimera approach to account for the relative
motion of the rotor blades [4, 7, 13] or a mesh deformation method such as the trans�nite
interpolation (TFI) or a spring-analogy [8, 9]. In Reference [16], a boundary conforming
discontinuous Galerkin �nite element approach was used with a method that adapts the mesh
to the solution and also accounts for the blade motions. The time-periodicity of the �ow
�eld generated by a forward �ying rotor is used in the discontinuous Galerkin approach of
Reference [17]. The time-dependent �ow equations are solved simultaneously in both space
and time for a complete period of the problem. This allows the local grid re�nement described
in Reference [16] to be extended to the time dimension. In the four-dimensional space, the
problem is ‘steady’.
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Park and Kwon [9] used an unstructured Euler solver with spring-analogy to adjust the grid
for the rotor blade motions. Sliding planes were used to couple a part of the mesh rotating
with the rotor and a stationary lower part around an approximate helicopter fuselage.
The Chimera approach was used in References [7, 13] to solve the Reynolds-averaged

Navier–Stokes equations on a block-structured mesh. In this approach, a separate block-
structured, rigidly-moving mesh is used for each rotor blade. The blade-�xed grids are embed-
ded in a background mesh. Along the Chimera boundaries, a tri-linear interpolation method is
used for the coupling of the solution on the blade-�xed and background grids. In Reference
[13], a fourth-order spatial discretization method on the background grid has been used in
order to better preserve the vortex wake.
In the present work, multi-block structured meshes are used with a mesh deformation

method that combines a rigid mesh motion of grid blocks attached to one of the rotor blades,
and a mesh deformation method for the remaining grid blocks. This approach was designed to
combine the bene�ts of Chimera, i.e. a high-quality grid around each of the rotor blades that
does not deform, and the relatively small computational cost of TFI. The main objective of
this paper is to present and validate all the extensions necessary to convert a �xed-wing CFD
code to one suitable for simulating rotary wings. The structure of the paper is as follows.
Section 2 presents the governing equations in an inertial frame of reference, as used in
the forward �ight simulations. The spatial discretization and temporal integration method are
described, followed by the hovering rotor formulation for a non-inertial frame of reference.
Then, the forward �ight model is detailed, including the coordinate transformations used to
introduce the periodic blade motions, the treatment of the periodic blade motions and the
grid deformation algorithm. Subsequently, the trimming approach used in the present CFD
framework for hovering and forward-�ying rotors is described. Validation results are presented
in Section 3 for both hovering and forward-�ying rotors. In this paper, the work of Caradonna
and Tung [18], the results of the HELISHAPE project [19] and the experiments of Philippe
and Chattot [20] were used. Conclusions are �nally drawn and suggestions for further work
are put forward in Section 4.

2. BLOCK-STRUCTURED FLOW SOLVER

In this work, the helicopter-�xed frame of reference is used. The x-axis is pointing in the
direction of the helicopter tail, the z-axis vertically up and the y-axis is on the advanc-
ing side of the rotor. The rotor revolves in counter-clockwise direction (seen from above).
Figure 1 summarizes the notation used in this paper. A trimmed state requires that the moments
generated by the rotor about the x and y axes vanish and that the rotor torque, i.e. the mo-
ment about the z-axis, is balanced by the engine torque. Furthermore, a balance of forces is
required for the three coordinate directions. This state can only be achieved when the pitch of
the blade changes periodically around the azimuth. The azimuth-dependent blade normal ve-
locity and blade pitch setting give rise to a periodic �apping motion of the blade which leads
to a change of the e�ective incidence of the blade. The periodic changes of the �ow velocity
over the blades (and consequently the blade drag) as well as changes of the angular moment
of inertia due to the �apping motion lead to the lead-lag motion of the blade within the rotor
disk plane. The rotor is assumed to be fully articulated, i.e. with a separate hinge for the
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Figure 1. De�nition of coordinate systems: (a) top-view of rotor disk; and (b) sketch of transformations.

three motions for each rotor blade (see Figure 1(b)). The details of the rotor construction
vary for di�erent helicopter designs. Therefore, the location and order of the hinges should
be regarded as input parameters to allow rotors with di�erent numbers of blades and with
various rotor hub layouts to be analysed.
The �ow solver that forms the basis of the present method is described in detail in

Reference [1].

2.1. Governing equations in inertial frame of reference

The Navier–Stokes equations written in integral form in the arbitrary Lagrangian Eulerian
(ALE) formulation for time-dependent domains with moving boundaries, read

d
dt

∫
V (t)
w̃ dV +

∫
@V (t)

(F̃(w̃)− F̃v(w̃))̃n dS= S̃ (1)

The above equations form a system of conservation laws for any time-dependent control
volume V (t) with boundary @V (t) and outward unit normal ñ. The vector of conserved
variables is denoted by w̃=[�; �u; �v; �w; �E]T, where � is the density, u; v; w are the Cartesian
velocity components and E is the total internal energy per unit mass. F̃ and F̃v are the inviscid
and viscous �uxes, respectively. The �uxes include the e�ect of the time-dependent domain,
i.e. a mesh velocity is included in the contra-variant velocity components. In the absence of
volume forces and in an inertial frame of reference the source term S̃=0. For hovering rotors,
a non-inertial frame of reference is used for which S̃ �=0.
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2.2. Spatial discretization and the dual-time stepping method

Equations (1) are discretized using a cell-centred �nite volume approach on structured multi-
block grids. The spatial discretization leads to a set of di�erential equations in time,

@
@t
(wi;j;kVi;j;k)=−Ri;j;k(wi;j;k) (2)

where w and R are the vectors of cell variables and residuals, respectively. Here, i; j; k are
the cells indices in each of the grid blocks, Vi;j;k is the cell volume. The convective terms
are discretized using Osher’s upwind scheme [21]. MUSCL variable interpolation is used to
provide third-order accuracy and the Van Albada limiter is employed to prevent spurious
oscillations near steep gradients. Boundary conditions are set using ghost cells on the exterior
of the computational domain. For inviscid �ow simulations, ghost values are extrapolated from
the interior at solid boundaries ensuring the normal component of the velocity relative to the
solid wall is zero. Similarly, for viscous �ow simulations, ghost values are extrapolated at
solid boundaries ensuring that the velocity takes on the solid wall velocity.
For the present time-accurate simulations, temporal integration is performed using an im-

plicit dual-time stepping method. Following the pseudo-time formulation [22], the updated
mean �ow solution is calculated by solving the steady-state problems

R∗
i;j;k =

3Vn+1
i;j;k w

n+1
i;j;k − 4Vn

i;j;kw
n
i;j;k + Vn−1

i;j;k w
n−1
i;j;k

2�t
+Ri;j;k

(
wn+1

i;j;k

)
=0 (3)

where the terms Vn−1
i;j;k , V

n
i;j;k and Vn+1

i;j;k represent the cell volume at di�erent (real) time steps.
Equation (3) represents a nonlinear system of equations. This system can be solved by intro-
ducing an iteration through pseudo-time � to the steady state, as given by

Vn+1
i;j;k

wn+1;m+1
i;j;k − wn+1;m

i;j;k

V n+1
i;j;k ��︸ ︷︷ ︸
A

+
3Vn+1

i;j;k w
n+1;m
i;j;k − 4Vn

i;j;kw
n
i;j;k + Vn−1

i;j;k w
n−1
i;j;k

2Vn+1
i;j;k �t

+
Ri;j;k

(
wn+1;m

i;j;k

)
Vn+1

i;j;k

=0 (4)

where the mth pseudo-time iterate at real time step n+ 1 is denoted by wn+1;m and the cell
volumes are constant during the pseudo-time iteration. The unknown wn+1

i;j;k is obtained when
term A in Equation (4) converges to a speci�ed tolerance. An implicit scheme is used for
the pseudo-time integration. In the implicit integration method, the �ux residual Ri;j;k(wn+1

i;j;k )
is linearized as

Ri;j;k(wn+1) =Ri;j;k(wn
i;j:k) +

@Ri;j;k(wn
i;j:k)

@t
�t +O(�t2)

≈Rn
i;j;k(w

n
i;j:k) +

@Rn
i;j;k

@wn
i;j;k
(wn+1

i;j;k − wn
i;j;k) (5)

Equation (4) then becomes a system of linear equations which is solved using the generalized
conjugate gradient method [23] with a block incomplete lower–upper (BILU) pre-conditioner.
Typically the pseudo-time integration in Equation (4) is continued at each real time step until
the residual has dropped three orders of magnitude. For the simulations presented here, this
typically required 25–35 pseudo-time steps.
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2.3. Hover formulation

Assuming that the wake shed from the rotor is steady, the �ow around a hovering rotor can
be treated as a steady-state problem. Furthermore, the periodicity of the �ow in the azimuthal
direction can be used to reduce the computational expense, i.e. for an n-bladed rotor a 1=n
segment of the complete domain with periodic boundary conditions su�ces to model the rotor.
The present hover models assumes a constant rotation rate ! about the x-, y- or z-axis.

If rotation about the z-axis is assumed the rotation vector becomes !̃=(0; 0; !)T. The hover
model uses a mesh that does not rotate about the z-axis. A non-inertial frame of reference is
used to account for the rotor rotation, as introduced in Reference [10]. The centripetal and
Coriolis acceleration terms in the momentum equations are modelled here using a combination
of a mesh velocity in the ALE formulation of the Navier–Stokes equations (1) and a source
term for the momentum equations.
The mesh velocity introduced in the system of equations (1) corresponds to mesh rotation

in the direction of the rotor, i.e. a reference velocity ũref =!× r̃ is introduced, where r̃ is the
position vector of a cell.
In addition to the mesh velocity, a source term for the momentum equations is introduced:

S̃=[0;−�!× ũh; 0]T (6)

where ũh is the velocity �eld in the present rotor-�xed frame of reference.
The non-inertial frame of reference used here has two bene�ts over a rotating frame of

reference: (i) the energy equation is unchanged by the rotation vector !̃ and (ii) a vanishing
‘undisturbed’ velocity �eld occurs in contrast to the position-dependent ‘undisturbed’ velocity
�eld in the rotating frame of reference, which is given by −!× r̃. This is bene�cial in
imposing boundary conditions. Two types of far-�eld boundary conditions are used. The
�rst is based on imposing unperturbed free-stream=linear extrapolation at the far-�eld of the
computational domain. Extrapolation is used in the vertical direction on the in�ow and out�ow
boundaries. Experience shows that the far-�eld boundaries need to be at least 5 rotor radii away
from the rotor if far-�eld boundary conditions are used. Moving the far-�eld boundary closer
to the rotor leads to signi�cant �ow re-circulation within the domain. The second approach is
a ‘potential sink=Froude’ boundary condition and is designed to suppress re-circulation. In this
case, a potential sink is placed at the rotor origin [2, 6, 11] and based on actuator-disk theory,
a constant axial (out�ow) velocity is prescribed on a circular part of the out�ow boundary
face. The magnitude of this velocity is determined by the rotor thrust and the out�ow radius
by the following empirical relation [2]:

Rout�ow
R

=0:78 + 0:22 exp(−dout�ow=R) (7)

Actuator-disk theory predicts a wake contraction to R=
√
2 far from the disk, where the axial

velocity is twice the induced axial velocity through the rotor disk. In this work, dout�ow=R ≈ 4
and Rout�ow=R ≈ 0:783 are used. On the remainder of the far-�eld boundary, the velocity due
to the potential sink is imposed. The strength of the sink is chosen to balance the mass �ow
into and out of the computational domain.
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2.4. Forward �ight modelling

The construction of rotor heads is fully explained in many text books, e.g. References
[24–27]. For a typical helicopter rotor, the rotor blades are attached to the rotor head by
a set of three hinges: the �ap hinge allows the blade to �ap up and down, the lead-lag
hinge allows the blade an in-plane forward or backward motion and the feathering hinge is
used to change the blade pitch. In a number of modern helicopters, one or more of these
hinges is replaced by a �exible connecting beam. The control input consists of a ‘collec-
tive’ pitch, i.e. a revolution-averaged pitch that is identical for all blades, and a ‘cyclic’
pitch, i.e. a periodic pitch change in the azimuthal direction. The de�ections in �apping and
lead-lag result from balances of inertial and aerodynamic forces. In hover, the blade encoun-
ters a constant blade normal velocity, and as a result, no cyclic pitch change is needed.
In this case, a collective pitch is set and a constant �apping de�ection (‘coning’) results.
The blade tips trace out a plane called the tip-path plane, which is horizontal for hovering
rotors.
In forward �ight, the blades experience a blade normal velocity which depends on the

azimuthal position. For a radial station r=R of a rotor blade, the blade normal Mach
number is

Mn( )=Mtip
r
R
+M∞ sin  =Mtip

( r
R
+ � sin  

)
where �=M∞=Mtip is the advance ratio of the rotor.
Level forward �ight of a helicopter requires that the rotor is trimmed. Assuming that the

rotor creates forces normal to the tip-path plane, this plane is tilted forward to generate
the necessary forward thrust. A level forward �ight of a helicopter involves the following
unknowns: the forward tilt of the tip-path plane, the collective pitch, cyclic pitch and �apping
and lead-lag harmonics. Obtaining these is part of the trimming problem. Considering the
above, a forward �ight model in a CFD method should involve: (i) a method to change the
‘collective’ blade pitch, and to introduce the periodic ‘cyclic’ pitch and periodic �apping and
lead-lag de�ections, (ii) a method to adjust the mesh to account for the changing blade pitch
and de�ections and (iii) a trimming method to determine the collective pitch, cyclic pitch and
�apping and lead-lag harmonics.

2.5. Formulation of rotor blade motion

Figure 1(a) shows a top-view of a rotor in forward �ight. The azimuthal angle  =0◦ cor-
responds to a position on the positive x-axis and  =90◦ to the positive y-axis. The blades
are numbered anti-clockwise, starting with blade one that is aligned with the x-axis at  =0◦.
Furthermore, the following assumptions are made: the rotor blades are rigid and connected
to the rotor hub by a set of three hinges: �ap hinge, lead-lag hinge and pitch centre. The
order of the hinges can be di�erent, though for the rest of the discussion we will continue
with the order shown in Figure 1(b). The same �gure, also shows the relationship between
the helicopter-�xed and blade-�xed frames of reference. The following notation is used:

1. x: the helicopter-�xed frame of reference.
2. x(1): the blade frame of reference after applying rotation.
3. x(2): the blade frame of reference after applying rotation and �apping.
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4. x(3): the blade frame of reference after applying rotation, �apping and lead-lag.
5. x(4): the blade frame of reference after applying rotation, �apping, lead-lag and pitch.

The rotation, �apping, lead-lag and pitch angles are de�ned as

 =!t

�( ) = �0 − �1s sin( )− �1c cos( )− �2s sin(2 )− �2c cos(2 )− · · ·

�( ) = �0 − �1s sin( )− �1c cos( )− �2s sin(2 )− �2c cos(2 )− · · · (8)

�( ) = �0 − �1s sin( )− �1c cos( )− �2s sin(2 )− �2c cos(2 )− · · ·

where ! is the constant rate of rotation about the z-axis. The collective pitch is �0 and
the coning angle is �0. In the present work, only the �rst harmonic terms in Equation (8)
are considered though inclusion of higher harmonics is trivial. The following transformation
matrices are introduced for rotation (about the z-axis), �apping (about the y(1)-axis), lead-lag
(about the z(2)-axis) and pitch (about the x(3)-axis):

Crot =

⎛
⎜⎜⎝
cos  − sin  0

sin  cos  0

0 0 1

⎞
⎟⎟⎠ ; C�ap =

⎛
⎜⎜⎝
cos� 0 − sin �
0 1 0

sin � 0 cos�

⎞
⎟⎟⎠

Clag =

⎛
⎜⎜⎝
cos � − sin � 0

sin � cos � 0

0 0 1

⎞
⎟⎟⎠ ; Cpitch =

⎛
⎜⎜⎝
1 0 0

0 cos � − sin �
0 sin � cos �

⎞
⎟⎟⎠

(9)

and the corresponding time derivatives are

dCrot
dt

=!

⎛
⎜⎜⎝

− sin  − cos  0

cos  − sin! 0

0 0 0

⎞
⎟⎟⎠ ;

dC�ap
dt

= �̇

⎛
⎜⎜⎝

− sin � 0 − cos�
0 0 0

cos� 0 − sin �

⎞
⎟⎟⎠

dClag
dt

= �̇

⎛
⎜⎜⎝

− sin � − cos � 0

cos � − sin � 0

0 0 0

⎞
⎟⎟⎠ ;

dCpitch
dt

= �̇

⎛
⎜⎜⎝
0 0 0

0 − sin � − cos �
0 cos � − sin �

⎞
⎟⎟⎠

(10)

Assuming constant rotation rate, the temporal derivatives of the �ap, lead-lag and pitch
angles can be written as

d�
dt
=!

d�
d 

;
d�
dt
=!

d�
d 

;
d�
dt
=!

d�
d 

(11)
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The coordinates of a point P in the blade-�xed system in terms of its co-ordinates in the
helicopter-�xed frame of reference, after rotation ( ), �apping (�), lead-lag (�) and pitching
(�) become:

x̃P =CrotC�apClagCpitch(̃xP − x̃pitch)+CrotC�apClag(̃xpitch − x̃lag)

+CrotC�ap(̃xlag − x̃�ap) + Crot x̃�ap (12)

where x̃�ap, x̃lag and x̃pitch de�ne the locations of the �ap hinge, lead-lag hinge and the pitch
centre. The velocity of P in terms of the helicopter-�xed frame of reference is then

dx̃P
dt
=
dCrotC�apClagCpitch

dt
(̃xP − x̃pitch)︸ ︷︷ ︸

I

+
dCrotC�apClag

dt
(̃xpitch − x̃lag)︸ ︷︷ ︸
II

+
dCrotC�ap

dt
(̃xlag − x̃�ap)︸ ︷︷ ︸
III

+
dCrot
dt

x̃�ap︸ ︷︷ ︸
IV

(13)

The terms in Equation (13) represent the following contributions:

• Term I is the contribution due to the combined rotation, �apping, lead-lag and pitching
motion relative to the pitch centre.

• Terms II, III and IV together represent the contribution due to the movement of the pitch
centre as a result of the rotation, �apping and lead-lag motion, which can be written as

dCrot
dt

[̃x�ap + C�ap(̃xlag − x̃�ap) + C�apClag(̃xpitch − x̃lag)] (rotation)

+Crot
dC�ap
dt

[(̃xlag − x̃�ap) + Clag(̃xpitch − x̃lag)] (�apping)

+CrotC�ap
dClag
dt

(̃xpitch − x̃lag) (lead-lag)

The derivatives of the matrix products in Equation (13) are computed using the recurrence
relations:

dCrotC�ap
dt

=Crot
dC�ap
dt

+
dCrot
dt

C�ap

dCrotC�apClag
dt

=(CrotC�ap)
dClag
dt

+
d(CrotC�ap)

dt
Clag

dCrotC�apClagCpitch
dt

=(CrotC�apClag)
dCpitch
dt

+
d(CrotC�apClag)

dt
Cpitch

Using Equations (8) and (11)–(13), the position and velocity of any point P in the helicopter-
�xed frame of reference can be expressed as functions of the azimuth  .
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2.6. Mesh movement, deformation and multi-block topology

For forward-�ight simulations, a technique was developed to account for periodic rotor blade
motions using deforming block-structured meshes. The method aims to maintain the grid
quality as the mesh is deformed at each time-step. The present approach divides the multi-
block mesh in two types of grid blocks: blocks moving ‘rigidly’ with one of the rotor blades
and blocks that are deformed to account for the motion of the blade. This approach preserves
the quality of the mesh near the blades and moves the deformation of the mesh to less critical
areas of the computational domain. The method imposes constraints on the employed multi-
block topology and a sensible choice of the size of the blade-attached mesh blocks is needed
to prevent large mesh deformations near the block boundaries of the blade-attached blocks.
The block selection process is shown in Figure 2 for one quarter of the computational domain
of the four-bladed ONERA 7A model rotor [19]. A C–H block topology is used for the grid
around the rotor blades. The blocking uses extruded blocks from the rotor blade tip towards
the far-�eld boundary and from the rotor root to the rotor hub, i.e. the grid is not collapsed
around the blade tips. The helicopter rotors considered here have a generic rotor hub structure.
The present method requires a radial block division between the rotor hub and the root of the
blades. Another radial block division is needed some distance outboard (typically one chord
length) of the blade tips.
The block selection method involves the following steps:

1. Blocks connected to a rotor blade are tagged to move ‘rigidly’. For each of these blade-
attached blocks, the blade number is stored.

2. For the remaining blocks, the connections to ‘rigid’ moving blocks are determined. If a
block has two connections to blade-attached blocks moving with the same rotor blade,
the block is tagged to move ‘rigidly’ with that blade. This creates a layer of blocks
around the rotor blades with a smooth bounding surface, i.e. without ‘gaps’ near the
edges. An example of this bounding surface is shown as shaded surfaces in Figures 2(c)
and (d).

3. For the blocks tagged to move ‘rigidly’, the grid in the initial position ( =0◦) and
without blade articulation is stored for reference.

Using this ‘reference’ grid, Equation (12) can now be used to update the grid from time level
n to n+ 1 for the blocks tagged for rigid-mesh motion.

xt=n+1 =CrotC�apClagCpitch(xreference − x̃pitch) + CrotC�apClag(̃xpitch − x̃lag)

+CrotC�ap(̃xlag − x̃�ap) + Crot x̃�ap (14)

where Crot, C�ap, Clag and Cpitch are determined for the azimuth at time level n+ 1. The grid
velocity needed for time-accurate computations is determined for the ‘rigidly’ moving blocks
using Equation (13):

dxn+1

dt
=
dCrotC�apClagCpitch

dt
(xreference − x̃pitch) +

dCrotC�apClag
dt

(̃xpitch − x̃lag)

+
dCrotC�ap

dt
(̃xlag − x̃�ap) +

dCrot
dt

x̃�ap (15)
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(a) (b)

(c) (d)

Figure 2. Blocking for the four-bladed ONERA 7A rotor: (a) C–H blocking around
the blade; (b) treatment of the hub region; (c) ‘Rigid’ part of mesh around the blade;

and (d) ‘Rigid’ mesh in hub region.

The method for updating the grid for the blocks not moving with one of the rotor blades
involves the following steps:

1. Block faces connected to ‘rigidly’ moving blocks are selected.
2. These block faces are treated as rigid, using Equation (14).
3. The e�ect of rotation is subtracted from the mesh updates at this stage.
4. The mesh updates of block faces connected to ‘rigidly’ moving blocks form the input
to the TFI method used for the deforming blocks.

5. After applying the TFI method, the deformed mesh is rotated to the new azimuth.
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The grid velocity for the blocks not moving with one of the rotor blades is obtained using
similar steps as for the mesh deformation, i.e. the block faces, connected to ‘rigidly’ moving
blocks are selected and for these faces, Equation (13) gives the grid velocity. Then, the e�ect
of the rotor rotation is subtracted. The remaining grid velocity is due to the periodic blade
motion and is computed from the grid velocity at the block face(s) using the TFI method.
Finally, the e�ect of the mesh rotation is added.
For a two-bladed rotor, Figure 3 presents a comparison between a baseline grid and

deformed grids for 8◦ pitch increase, 5◦ �apping de�ection and 2◦ lead-lag de�ection (condi-
tions representative of the retreating side of rotor disks). The grid obtained using the present
method is compared with the grid resulted from applying TFI at all blocks. Details of the
meshes are shown for the outboard station r=R≈ 0:8 and the near-hub region. Figure 3 clearly
shows the large distortion of the grid in the vicinity of the blade leading-edge due to the pitch
change for the case the TFI method is used. An appropriate choice of the dimensions of the
blade-attached blocks is needed for large pitch changes and=or �apping and lead-lag de�ec-
tions. For the results in Figure 3, one chord length was used as distance along the directions
normal to the blade and normal to the blade tip. The maximum relative cell volume change
is shown in Table I for an example involving the ONERA 7A model rotor [19]. The table
compares the two mesh-deformation methods for several values of the changes in �apping
de�ection (�) and blade pitch (�). The values of �� and �� are representative for the changes
occurring within a revolution of the rotor in forward �ight. Although the maximum relative
cell volume change is just one indicator of mesh quality, Table I does show that moving
the mesh blocks rigidly with the rotor blade results in changes that are about an order of
magnitude smaller than if TFI is applied throughout the domain. With the proposed method,
mesh deformation only occurs in blocks not connected to either of the blades, i.e. in blocks
where mesh cells are typically much larger than those close to the blades.

2.7. Trimming method

The trimming method used here is based on blade-element theory, which enables the solution
of approximate equations for the aero-mechanics of the rotor. The trimming method consists of
an initial trim-state computation and a number of subsequent re-trimming steps. The initial trim
state can be obtained either o�-line or within the CFD solver. Due to the simple nature of the
aerodynamic model, the initial trim-state cannot be expected to be very accurate, however,
during re-trimming steps, blade loads computed using the CFD solution are used. During
re-trimming, the collective pitch is updated via a Newton–Raphson process, where the simple
aerodynamic model is only used to compute the derivatives of the loads. As a result, upon
convergence, the trim state is independent of the approximate aerodynamics. For simulations
of trimmed hovering rotors, the re-trimming is carried out after the steady �ow solution has
converged to a prescribed level. Re-trimming is repeated every nretrim steps (250 in the present
work). For simulations of forward-�ying rotors, re-trimming is carried out after completion of
about 3 rotor revolutions using revolution-averaged integrated loads from the CFD solution.
The trimming method needs a target thrust coe�cient cT as input. In addition, models for the
fuselage and its drag are necessary in order to compute the total drag, as a function of the
helicopter’s advance ratio. From the rotor thrust and total drag, the orientation of the tip-path
plane can be obtained, i.e. the forward tilt. For a rotor at straight level �ight conditions the
orientation of the tip-path plane can be obtained from �tpp =−D=W , where D and W represent
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Figure 3. (a, b) Original, (c, d) deformed grid using the TFI method and (e, f) deformed
grid using the proposed mesh motion=deformation method. The mesh at a radial station of
r=R=0:80 (a, c, e) and the mesh in the near-hub region (b, d, f). For all cases, 8◦ pitch
change, 5◦ �apping de�ection and 2◦ lead-lag de�ection were applied: (a) outboard, baseline
grid; (b) hub, baseline grid; (c) outboard, deformed (TFI); (d) hub, deformed (TFI); (e)

outboard, deformed (present method); and (f) hub, deformed (present method).
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Table I. Maximum relative cell volume change for the articulated ONERA 7A rotor.

�� 2:0◦ 2:0◦ 3:0◦ 3:0◦ 2:0◦ 2:0◦ 3:0◦ 3:0◦

�� 5:0◦ −5:0◦ 5:0◦ −5:0◦ 3:0◦ −3:0◦ 3:0◦ −3:0◦

TFI 0.6993 0.6588 1.0079 0.9547 0.6772 0.6302 0.9908 0.9261
Rigid=TFI −0.1199 −0.1142 −0.1399 −0.1185 0.0886 −0.0698 0.1077 −0.0736
A collective of 7:5◦ and a coning of 0:0◦ were built in the CFD grid.

the total drag of the helicopter and its weight. Here, �tpp is assumed to be small and is taken
positive for backward tilt. The aerodynamic model needs an estimate of the induced velocity
in the tip-path plane. The induced velocity is assumed constant in the tip-path plane, and
is obtained from Glauert’s propeller theory (see References [24–26]). The non-dimensional
in�ow factor � is de�ned as

�=
V sin �tpp+vi

�R
=��tpp + �i (16)

where vi is the induced velocity (¡0 for a lifting rotor) and V sin �tpp the in�ow due to the
rotor disk tilt. In Equation (16), R is the rotor radius and � the rotation rate. The in�ow factor
� is computed using a Newton–Raphson method to solve the following non-linear equation
for �i:

�i=−cT
2

1√
�2 + (� sin �tpp + �i)2

(17)

where the thrust coe�cient cT is de�ned as

cT =
W

�A(�R)2
(18)

From classical theory [24–26], the collective pitch, cyclic pitch and �apping coe�cients can
then be calculated. For the collective pitch, the following expression is used:

cT
�
=

a
4

[
2
3
�0
1− �2 + 9�4=4
1 + 3�2=4

+ �
1− �2

1 + 3�2=4

]
(19)

where a is the lift slope factor assumed to be 5:7. In Equation (19), � is the solidity of the
rotor de�ned as

�=
Nbladesc
	R

(20)

With the collective �0, the �apping harmonics can be derived from the solution of the blade-
�apping equation:

�0 =


8

[
�0(1 + �2) +

4
3
� − 4

3
��(nfp)1c

]
(21)

�(nfp)1c =
�( 83�0 + 2�)
1 + 3

2�
2

(22)
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�(nfp)1s =
4
3��0
1 + 1

2�
2

(23)

where the superscript (nfp) indicates that the �apping harmonics �0, �1s are relative to the
no-feathering plane, while � is relative to the tip-path plane. The de�nition of the no-feathering
plane and the relation to the tip-path plane can be found in References [24, 25]. In Equation
(21), 
 is the Lock number de�ned as


=
�acR4

I
(24)

where c is the blade chord and I the moment of inertia about the �ap hinge. A typical value
of 
=8:0 is used here. The following assumptions are then made:

�1c= �tpp − �shaft (25)

�1s=0 (26)

where �shaft is the tilt angle of the rotor. The assumption �1s=0 means that the tip-path
plane is not tilted sideways. From the geometric relations between the tip-path plane and
no-feathering plane, the cyclic harmonics required to obtain this state are

�1s=�(nfp)1c − �1c (27)

�1c=−�(nfp)1s + �1s (28)

The present trimming model neglects the lead-lag de�ection of the blades, which has only a
secondary e�ect on the rotor blade aerodynamics.
A hovering rotor, for which �=0, represents the simplest trimming case. For this case, the

collective pitch �0 and the coning angle �0 of the rotor are unknowns. The procedure consists
of the following steps:

1. At start-up, an initial estimate of the trim state is computed using the following equation
for the collective pitch:

�0 =
6
�a

CT +
3
2

√
CT
2

(29)

In this case, the in�ow factor � can be obtained directly from the equation:

�=−
√

CT
2
=−�a

16

[√
1 +

64
3�a

�0 − 1
]

(30)

For a twisted rotor blade, Equation (29) gives the collective pitch at 0.75 of the rotor
radius R. Equation (21) for the coning angle �0 is then used:

�0 =


8

[
�0 +

4
3
�
]

(31)

2. The mesh is subsequently deformed to account for the new rotor blade incidence and
position.
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3. A steady �ow simulation is performed until a prescribed level of convergence is reached.
4. After nretrim steps, a re-trimming is performed. The collective is updated using the fol-
lowing relation:

��0 =
CT; target − CT
dCT=d�0

(32)

dCT
d�0

=
�a
6

[
1− 1√

1 + (64=3�a)�0

]

Equation (31) gives the coning angle for the new collective pitch �0 + ��0.
5. Steps 2–4 are repeated until a constant trim state is reached.

3. VALIDATION OF THE FRAMEWORK

Validation is now presented for each of the main components: the hover formulation, the
forward �ight method, the grid motion=deformation algorithm as well as the rotor trimming.
Several rotor cases have been employed and the planform shapes of all computed rotors are
given in Figure 4.
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Figure 4. Rotor blades employed for validation. � denotes the rotor aspect
ratio (rotor radius over root chord).
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3.1. Hovering rotors

The Caradonna and Tung [18] and the ONERA 7A=7AD1 rotors [19] have been used for
the validation of the hover formulation. A summary of all hover cases is given in Table II.
Computations for all test cases have been performed on full-rotor grids as well as blade-
periodic ones. The test cases range from simple two-bladed, non-lifting rotors of simple plan-
form, to lifting cases with high tip Mach number as well as four-bladed rotors of complex
planform with an advanced blade tip with anhedral.
Caradonna and Tung [18] carried out an experimental and analytical study of a model he-

licopter rotor in hover. The experimental study involved simultaneous blade pressure mea-
surements and tip vortex surveys. The rotor employed two cantilever-mounted, manually
adjustable blades. The blades had a NACA 0012 pro�le and were untwisted and untapered.
The rotor aspect ratio, de�ned as the ratio of rotor radius and blade chord was 6. The model
rotor had a diameter of 2.286m, and a chord length of 0.191m. The experiments were car-
ried out at various collective pitch settings and rotation rates. Collective settings �c from 0
to 12o and tip Mach numbers ranging from 0.23 to 0.9 were used. In the Caradonna–Tung
experiment, the surface pressure distribution was measured at 5 rotor blade sections (r=R=0:50,
0.68, 0.80, 0.89 and 0:96). The �rst test case was non-lifting at zero collective. Since the
rotor was not generating lift, there was no induced downward velocity. As a result, this
case converged faster than lifting cases and was less sensitive to the imposed boundary
conditions at the upper and lower domain boundaries. Results are shown for two stations:
r=R=0:80 and 0.96. Figure 5 shows the comparison of the computed and measured wall
pressure distributions. For this case the agreement between the results from the inviscid sim-
ulation and the experimental data is excellent. There is no di�erence in the results obtained
using the periodic and the full meshes. Viscous results using the k–! model are also pre-
sented and again good agreement has been obtained. For this case, grids with �ne near-wall
resolutions were needed (10−5 of blade chord), however, the same multi-block topologies
are applicable.
The same radial stations have been used for the lifting case. Figures 6(a) and (b) show

the comparison of the computed surface pressure distribution on the full rotor mesh with
the measured data for r=R=0:80 and 0.96, respectively. For the periodic mesh, Figures 6(c)
and (d) present the same comparison. The �gures show very good agreement between the

Table II. Summary of conditions for hovering Caradonna–Tung (C–T) and ONERA 7A=7AD1 rotors.

C–T C–T 7A 7AD1

Flow conditions
Tip Mach number, Mtip 0.520 0.439 0.6612 0.6612
Reynolds number 2:3× 106 1:9× 106 2:1× 106 2:1× 106
Collective pitch, �c 0o 8o �0:7 = 7:5o �0:7 = 7:5o

Computation details
Grid size (full rotor) 2 200 000 4 000 000 2 400 000 —
Grid size (periodic) 1 100 000 2 000 000 600 000 600 000 and 1 300 000
Modelling Inviscid= Inviscid= Inviscid Inviscid

k–! k–!
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Figure 5. Cp comparison for the Caradonna and Tung non-lifting case:
�c = 0◦, Mtip = 0:520: (a) r=R=0:96 (full mesh); (b) r=R=0:987 (full mesh);

(c) r=R=0:826 (periodic mesh); and (d) r=R=0:987 (periodic mesh).

computed and measured surface pressure distributions. As for the non-lifting case, there is
no di�erence between the results obtained on the full and the periodic meshes. A slightly
better prediction of the suction peak (Figures 6(c) and (d)) has been obtained for the viscous
results.
The 7A=7AD1 model rotors were tested in the DNW wind tunnel during the HELISHAPE

research campaign [19]. These are four-bladed rotors with 2.1m radius, 0.14m chord and
have a non-constant geometric twist. The rotors have a rectangular planform and consist of
ONERA OA213 and OA209 aerofoil sections. The rotor blade aspect ratio is 15. Figure
4 summarizes the geometrical data for the rotors. Results are shown for a collective pitch
setting 7:5◦ at r=R=0:7. The required CPU time for a representative 7A hover simulation
is given in Table V. Figures 7(a) and (b) show the comparison of the computed surface
pressure distribution on the full rotor mesh with the measured data for r=R=0:826 and 0.987,
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Figure 6. Cp comparison for the Caradonna and Tung lifting case: �c = 8◦ and
Mtip = 0:439: (a) r=R=0:80 (full grid); (b) r=R=0:96 (full grid); (c) r=R=0:80

(periodic mesh); and (d) r=R=0:96 (periodic mesh).

respectively. For the periodic mesh, Figures 7(c) and (d) present the same comparison. The
experimental data reported in Reference [28] were used. As with the simulations for the
Caradonna–Tung test case, there is excellent agreement between the results on the full and
periodic grids.
Similar conclusions can be drawn from the results obtained for the ONERA 7AD1 rotor.

This case has a complex parabolic tip with anhedral in addition to a non-constant geometric
twist distribution, similar to the one of the 7A rotor. For this case results in Figure 8 are only
presented for computations on periodic grids. Since this is the hardest hover case considered
in this paper, results are shown for two di�erent grids and at four spanwise stations. The
agreement between experiments and simulation remains excellent for all four stations and
there is no signi�cant di�erence between the results obtained on the two grids, the �ner
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Figure 7. Cp comparison for the ONERA 7A hovering rotor. Mtip = 0:6612: (a) r=R=0:826 (full mesh);
(b) r=R=0:987 (full mesh); (c) r=R=0:826 (periodic mesh); and (d) r=R=0:987 (periodic mesh).

of which includes 1.3 million points. In addition, the 7AD1 hover test case demonstrates
that the blocking strategy described in Section 2.6 can be used with complex parabolic tip
shapes.

3.2. Forward �ight cases

Two cases have been considered for validation of the forward �ight formulation. The details of
the cases in terms of the employed blade actuations and �ow conditions are given in Table III.
The �rst test case is for a non-lifting rotor for which experimental data is available for the
surface pressure on the advancing side. This test case models a rotor in high-speed forward
�ight and numerical results are compared against experimental data for the surface pressure
on the advancing side. A second test case considers a two-bladed lifting rotor in forward �ight
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Figure 8. Cp comparison for the ONERA 7AD1 hovering rotor. Mtip = 0:6612: (a) r=R=0:5;
(b) r=R=0:7; (c) r=R=0:915; and (d) r=R=0:975, solutions have been obtained on a periodic grid.

Table III. Summary of conditions for forward �ight test cases.

Case Mtip � �0 �1s �1c �0 �1s �1c �0 �1s �1c

1 0:625 0:5 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦ 0◦

2 0:60 0:25 4:0◦ 2:0◦ 0:0◦ 1:5◦ 2:0◦ 2:0◦ 0:0◦ −2:0◦ 0:0◦

with prescribed harmonic pitch changes, �apping and lead-lag de�ections thus demonstrating
the capability of the present method to simulate a fully articulated rotor in forward �ight.
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3.2.1. ONERA two-bladed model rotor. This test case involves the non-lifting forward �ight
of a two-bladed model rotor, tested at ONERA [20]. The rotor had untwisted blades with
symmetric pro�les of the NACA four-digit family, a radius of R=0:75 m and a trapezoidal
planform (c=0:166m at 0:37R and 0:115m at the tip). The pro�le relative thickness decreased
linearly from 17% at the root to 9% at the tip. For the test case studied here, the forward
�ight Mach number was 0.3125 and the tip Mach number was 0.625 giving an advance ratio
of 0.50. Experimental data is available for four azimuthal positions  =30; 60; 90 and 120◦

and for two radial stations r=R=0:85 and 0.90. Since this is a non-lifting case, it can only be
used as a �rst validation step of the forward �ight formulation. The required CPU time for this
test case is given in Table V. For the radial station r=R=0:85, the chord-wise surface pressure
coe�cient is plotted versus the azimuthal position  in Figure 10 for the advancing side of
the rotor. Here, the Cp is based on the local blade-normal Mach number. At  =0◦ the local
blade normal Mach number at r=R=0:85 is 0.531 and a shock-free pressure distribution can be
seen. As the azimuth increases to 90◦, the local blade normal Mach number increases. From
about  =60◦, a local supersonic region forms closed by a shock. From  =90◦, the local
blade normal Mach number decreases and the shock wave vanishes at  =160◦. A marked
asymmetry can be observed for the shock wave location, i.e. the pressure distributions for
 =60 and 120◦ (for which the blade normal Mach number is identical) are quite di�erent. For
the radial stations r=R=0:85 and 0.90, the computed surface pressure coe�cient is compared
to the experimental data in Figure 9. Numerical results for two di�erent meshes are shown.
Both meshes had a C–H topology around the blades and 236 grid blocks, the densities for the
coarse and �ne grids were 1:2× 106 and 1:8× 106 points, respectively. A step size in azimuth
of 0:25◦ has been used. The agreement with the experimental data was very good for both
meshes with the �ner grid producing, as expected, a slightly stronger suction peak at  =150◦.
The main challenge in this case was to capture the highly dynamic shock formation and decay
process, which can be seen in Figure 10. The asymmetry of the pressure distribution shown
in Figure 10 can also be seen in Figure 9. For the retreating side, no experimental data was
available. The obtained results are, however, more than encouraging.

3.2.2. Articulated rotor in forward �ight. This test case involves the lifting forward �ight
of a two-bladed rotor. The rotor blades are untapered, untwisted with an aspect ratio of 6.
The blades are made of NACA0012 pro�les. Table III summarizes the input data for the test
case. The required CPU time for this test case is given in Table V. Figure 11 presents the
loading of the rotor disk along with sectional distributions of the surface pressure coe�cient
at various azimuth angles. On the same �gure the incidence is given as a function of the
azimuth. It is evident that on the advancing side the contributions of pitching and �apping
result in a signi�cant reduction of the incidence and this is re�ected in the loading of the
rotor. Figure 11 suggests that between 70 and 150◦ of azimuth only a small amount of lift
is produced on the advancing side. On the retreating side, the incidence plot indicates an
increase of incidence due to the pitching and �apping harmonics. Consequently, the sectional
Cp distributions indicate signi�cant amounts of lift. The location of the blades relative to the
disk plane is also shown. The blue shade on the �gure corresponds to the location of the
blade at constant collective and coning angles, while the grey shade indicates the instantaneous
position of the blade. The overall loading of the rotor disk highlights the lack of a trimmed
state for this case and clearly shows that the rear of the disk is much more loaded than the
front part.
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Figure 9. Chord-wise Cp distributions for the ONERA two-bladed model rotor at two radial stations
(r=R=0:85 and 0.90) for Mtip = 0:625 and advance ratio �=0:50.
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Figure 10. Chord-wise Cp for ONERA two-bladed model rotor in forward
�ight for 0◦6 6180◦ (r=R=0:85).

Table IV. Computed revolution-averaged thrust and moment
coe�cients for the fully articulated, forward-�ying rotor.

Cz Cm;x Cm;y

Rev. 2 0.003511 −0:000568 −0:000355
Rev. 3 0.003551 −0:000569 −0:000333

Using the surface pressure at each azimuth, the revolution-averaged thrust and moments
were computed. For the second and third revolution of the rotor, non-dimensionalised, aver-
aged loads and moments are shown in Table IV. Comparing the values for the second and
third revolution, a good level of convergence can be demonstrated. In Table IV, Cz is the
thrust of the rotor (positive upward), Cm;x the roll moment and Cm;y the pitching moment of
the rotor. The following non-dimensionalizations are used:

Cz=
Fz

	R2�v2tip
; Cm;x=

Mx

	R3�v2tip
; Cm;y=

My

	R3�v2tip

The non-zero values of Cm;x and Cm;y clearly show that the rotor is not in a trimmed state
(Table V).
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Figure 11. Two-bladed articulated rotor in forward �ight. The surface pressure distribution is shown at
six azimuth angles along with the variation of the incidence. The rotor disk loading is shown at the

centre. (Mtip = 0:60, �=0:25, sectional Cp distributions at r=R = 0:89.).
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Table V. CPU requirements for rotor computations (all results obtained on Pentium 4 processors).

Type Hover Hover Forward-�ight Forward-�ight
untrimmed trimmed non-lifting articulated

Rotor 7A 7A ONERA model Two-bladed model

# revolutions — — 3 3
Mesh size 600 000 600 000 1 200 000 1 200 000
# procs. 8 8 18 18
CPU time (h) 2 3 72 72
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Figure 12. Simulation of hover trim-state for 7A model rotor: Mtip = 0:6612, target CT =0:0068.

3.3. Trimmed rotor cases

Figures 12 and 13 show sample results for the ONERA 7A model rotor in hover. The �gures
compare results based on the initial trim approximation and results obtained using a re-
trimming after every 250 iterations. The employed grid had a built-in collective pitch of 7:5◦

at 70% of the rotor radius and 0◦ of coning. Figure 12 presents the results for a target
CT =0:0068 and tip Mach number 0.6612. The initial trimming over-predicts the collective
pitch and without subsequent re-trimming the solution converges to a CT value above 0:0068.
The re-trimming leads to a step reduction in the collective pitch, until converging to a value
0:35◦ larger than the built-in collective pitch. The �nal CT matches the target value. The
coning angle converges to a value of 2:3◦. Figure 13 shows results for a target CT =0:0050,
which required a reduction of the collective pitch relative to the built-in collective pitch.
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Figure 13. Simulation of hover trim-state for 7A model rotor: Mtip = 0:6612, target CT =0:0050.

Table VI. Results from trim-state calculations for ONERA 7A model rotor, Mtip = 0:6612,
re-trimming every 250 pseudo-time steps.

CT;target Initial retrim 1 retrim 2 retrim 3 retrim 4 retrim 5 retrim 6

0:0000 �0 = 0:00 0.54 −0.53 −0.58 −0.59 −0.60 −0.61
(re-trim) �0 = 0:00 0.00 0.00 0.00 0.00 0.00 0.00

0.0050 �0 = 7:57 7.13 6.74 6.21 6.06 5.97 6.02
(re-trim) �0 = 2:68 2.29 1.95 1.47 1.34 1.26 1.31

0.0068 �0 = 9:41 9.04 8.24 7.95 7.88 7.80 7.85
(re-trim) �0 = 3:73 3.40 2.69 2.44 2.37 2.31 2.35

0.0085 �0 = 11:07 11.14 9.90 9.70 9.64 9.63 9.62
(re-trim) �0 = 4:71 4.77 3.68 3.51 3.46 3.44 3.44

Again, the result without re-trimming over-predicted the CT value and the simulation with
re-trimming converged to the speci�ed target. The collective at convergence was 1:5◦ lower
than the built-in collective pitch, while the coning angle converged to a value of 1:3◦. The
details of several cases computed for this work are given in Table VI. For the �rst example
of Table VI a target thrust coe�cient of zero was requested and a �xed coning angle of zero
degrees has been imposed. The �nal collective angle of −0:61◦ corresponds to the zero-lift
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incidence of this rotor. This is an interesting case since it highlights the combined e�ect of
the cambered sections and the non-linear geometric twist used for the ONERA 7A rotor. It is
also evident that both collective and coning increase with the thrust coe�cient and this result
in a considerable increase of the required power. The dashed line in Figures 12 and 13 shows
the convergence of the thrust coe�cient without any trimming. As can be seen, the overhead
of the present trimming algorithm in comparison to a hover calculation without trimming at
a given set of collective and coning angles is moderate. Figures 12 and 13 indicate that an
increase between 50 and 70% of the number of iterations is required. The CPU times for
representative trimmed 7A hover computations are given in Table V.

4. CONCLUSIONS

A CFD framework has been presented and validated which allows the e�cient and accurate
computation of helicopter rotor �ows. Key ingredients are: (i) the time-dependent Reynolds-
averaged Navier–Stokes equations which permit for non-linear, unsteady aerodynamic phe-
nomena to be captured, (ii) the hover formulation which can simplify computations by
transforming an unsteady problem to a steady-state one, (iii) a novel grid-deformation strategy
that allows all blade motions to be taken into account separately and preserves the quality
of the CFD grids, and �nally, (iv) a simple trimming algorithm that allows computations to
be performed for standard non-maneuvering rotor conditions. Results have been obtained for
hovering and forward-�ying rotors and comparisons against experimental data are encourag-
ing. The validation cases covered a wide range of Mach numbers and angles, and for all cases
the proposed method resulted in high-quality grids and e�cient CPU times.
The superiority of the proposed treatment for the moving blades was demonstrated and

high-quality grids were obtained both in the near- and far-�eld of the domain. In contrast,
the TFI method resulted in highly skewed cells near the blade especially in the vicinity of
the leading edge at moderate-to-high pitch angles. Blade �apping was also found to a�ect the
grid quality near the tip. Again, the current method provided a solution with grids of high
quality able to capture the blade loading.
This work is part of a wider e�ort undertaken by the authors in predicting unsteady rotor

�ows. Separate from validation e�orts, future research is now directed towards the coupled
rotor=fuselage problem. In addition, the periodic nature of the �ow is to be exploited for the
e�cient computation of rotor �ows. These results will be reported in future papers.
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